Doubly periodic wave and folded solitary wave solutions for (2+1)-dimensional higher-order Broer–Kaup equation
Wenhua Huang,
Yulu Liu and
Zhiming Lu
Chaos, Solitons & Fractals, 2007, vol. 31, issue 1, 54-63
Abstract:
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional high-order Broer–Kaup equation by means of WTC truncation method. From the general solution, doubly periodic wave solutions in terms of the Jacobian elliptic functions with different modulus and folded solitary wave solutions determined by appropriate multiple valued functions are obtained. Some interesting novel features and interaction properties of these exact solutions and coherent localized structures are revealed.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905008714
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:1:p:54-63
DOI: 10.1016/j.chaos.2005.09.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().