Chaos synchronization for continuous chaotic systems by inertial manifold approach
Lingli Xie,
Kok-lay Teo and
Yi Zhao
Chaos, Solitons & Fractals, 2007, vol. 32, issue 1, 234-245
Abstract:
In this paper, we are concerned with the complete and generalized synchronization problems for chaotic ODE systems. Some general results are obtained by means of inertial manifold theory. Some examples, supported by numerical simulation, are given to illustrate the conciseness and effectiveness of the method.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905010696
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:1:p:234-245
DOI: 10.1016/j.chaos.2005.10.105
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().