New upper solution bounds for perturbed continuous algebraic Riccati equations applied to automatic control
Richard Davies,
Peng Shi and
Ron Wiltshire
Chaos, Solitons & Fractals, 2007, vol. 32, issue 2, 487-495
Abstract:
In dynamical systems studies, the so-called Riccati and Lyapunov equations play an important role in stability analysis, optimal control and filtering design. In this paper, upper matrix bounds for the perturbation of the stabilizing solution of the continuous algebraic Riccati equation (CARE) are derived for the case when one, or all the coefficient matrices are subject to small perturbations. Comparing with existing works on this topic, the proposed bounds are less restrictive. In addition to these bounds, iterative algorithms are also derived to obtain more precise estimates.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906006886
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:2:p:487-495
DOI: 10.1016/j.chaos.2006.06.096
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().