Lyapunov spectrum of a lattice of chaotic systems with local and non-local couplings
A.M. dos Santos,
C.F. Woellner,
S.R. Lopes,
A.M. Batista and
R.L. Viana
Chaos, Solitons & Fractals, 2007, vol. 32, issue 2, 702-710
Abstract:
We consider a one-dimensional chaotic piecewise linear map lattice with periodic boundary conditions and two types of interactions: (i) local couplings between nearest and next-to-the-nearest neighbors; and (ii) non-local couplings randomly chosen along the lattice according to a specified probability. The chaoticity of the lattice is described by means of its Lyapunov spectrum, which furnishes also information about the system global attractor in a high-dimensional phase space. We study in particular the dependence of this spectrum with the coupling parameters, as well as make comparisons with limiting cases, for which the Lyapunov spectrum is known.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905011045
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:2:p:702-710
DOI: 10.1016/j.chaos.2005.11.055
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().