EconPapers    
Economics at your fingertips  
 

Singular solitons of generalized Camassa–Holm models

Lixin Tian and Lu Sun

Chaos, Solitons & Fractals, 2007, vol. 32, issue 2, 780-799

Abstract: Two generalizations of the Camassa–Holm system associated with the singular analysis are proposed for Painlevé integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painlevé property, Painlevé–Bäcklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived.

Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905011161
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:2:p:780-799

DOI: 10.1016/j.chaos.2005.11.023

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:780-799