An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays
Ju H. Park
Chaos, Solitons & Fractals, 2007, vol. 32, issue 2, 800-807
Abstract:
This paper considers the robust stability analysis of cellular neural networks with discrete and distributed delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, a novel stability criterion guaranteeing the global robust convergence of the equilibrium point is derived. The criterion can be solved easily by various convex optimization algorithms. An example is given to illustrate the usefulness of our results.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905011173
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:2:p:800-807
DOI: 10.1016/j.chaos.2005.11.106
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().