EconPapers    
Economics at your fingertips  
 

Asymptotic solitons on a non-zero mean level

T.R. Marchant

Chaos, Solitons & Fractals, 2007, vol. 32, issue 4, 1328-1336

Abstract: The collision of solitary waves for a higher-order modified Korteweg-de Vries (mKdV) equation is examined. In particular, the collision between solitary waves with sech-type and algebraic (which only exist on a non-zero mean level) profiles is considered. An asymptotic transformation, valid if the higher-order coefficients satisfy a certain algebraic relationship, is used to transform the higher-order mKdV equation to an integrable member of the mKdV hierarchy. The transformation is used to show that the higher-order collision is asymptotically elastic and to derive the higher-order phase shifts.

Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905011926
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:4:p:1328-1336

DOI: 10.1016/j.chaos.2005.11.096

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1328-1336