EconPapers    
Economics at your fingertips  
 

Stability and chaos of LMSER PCA learning algorithm

Jian Cheng Lv and Zhang Yi

Chaos, Solitons & Fractals, 2007, vol. 32, issue 4, 1440-1447

Abstract: LMSER PCA algorithm is a principal components analysis algorithm. It is used to extract principal components on-line from input data. The algorithm has both stability and chaotic dynamic behavior under some conditions. This paper studies the local stability of the LMSER PCA algorithm via a corresponding deterministic discrete time system. Conditions for local stability are derived. The paper also explores the chaotic behavior of this algorithm. It shows that the LMSER PCA algorithm can produce chaos. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior of this algorithm.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905011598
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:4:p:1440-1447

DOI: 10.1016/j.chaos.2005.11.076

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1440-1447