Global robust exponential stability of delayed neural networks: An LMI approach
Ou Ou
Chaos, Solitons & Fractals, 2007, vol. 32, issue 5, 1742-1748
Abstract:
In this paper, the problems of determining the robust exponential stability and estimating the exponential convergence rate for neural networks with parametric uncertainties and time delay are studied. Based on Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique, some delay-dependent criteria are derived to guarantee global robust exponential stability. The exponential convergence rate can be easily estimated via these criteria.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905012142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:5:p:1742-1748
DOI: 10.1016/j.chaos.2005.12.026
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().