EconPapers    
Economics at your fingertips  
 

Global robust exponential stability of delayed neural networks: An LMI approach

Ou Ou

Chaos, Solitons & Fractals, 2007, vol. 32, issue 5, 1742-1748

Abstract: In this paper, the problems of determining the robust exponential stability and estimating the exponential convergence rate for neural networks with parametric uncertainties and time delay are studied. Based on Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique, some delay-dependent criteria are derived to guarantee global robust exponential stability. The exponential convergence rate can be easily estimated via these criteria.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905012142
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:5:p:1742-1748

DOI: 10.1016/j.chaos.2005.12.026

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1742-1748