Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action
Yugui Zhou,
Dongmei Xiao and
Yilong Li
Chaos, Solitons & Fractals, 2007, vol. 32, issue 5, 1903-1915
Abstract:
In this paper, we study the bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, which describes the psychological effects of the community on certain serious diseases when the number of infective is getting larger. By carrying out the bifurcation analysis of the model, we show that there exist some values of the model parameters such that numerous kinds of bifurcation occur for the model, such as Hopf bifurcation, Bogdanov–Takens bifurcation.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906000026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:32:y:2007:i:5:p:1903-1915
DOI: 10.1016/j.chaos.2006.01.002
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().