Parameterization of all path integral trajectories
Ciann-Dong Yang and
Chia-Hung Wei
Chaos, Solitons & Fractals, 2007, vol. 33, issue 1, 118-134
Abstract:
It is well known that the differentiation of the propagator obtained by path integral formalism leads to the Schrödinger equation. In this paper, we will prove the complementary result that the integration of the Schrödinger equation will lead to the path integral trajectories forming the propagator. The proposed Schrödinger’s approach to path integral is helpful in explaining the origin of the multiple quantum paths connecting two fixed points and in providing a means to find all these multiple paths. We point out that path integral trajectories are governed by quantum Hamilton equations derived from the Schrödinger equation and can be continuously parameterized in terms of a free parameter so that an infinite dimensional path integral can be transformed into a one-dimensional normal integral over this free parameter.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906009799
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:1:p:118-134
DOI: 10.1016/j.chaos.2006.10.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().