The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic
Alexey Stakhov
Chaos, Solitons & Fractals, 2007, vol. 33, issue 2, 315-334
Abstract:
We consider two important generalizations of the golden proportion: golden p-proportions [Stakhov AP. Introduction into algorithmic measurement theory. Soviet Radio, Moscow, 1977 [in Russian]] and “metallic means” [Spinadel VW. La familia de números metálicos en Diseño. Primer Seminario Nacional de Gráfica Digital, Sesión de Morfología y Matemática, FADU, UBA, 11–13 Junio de 1997, vol. II, ISBN 950-25-0424-9 [in Spanish]; Spinadel VW. New smarandache sequences. In: Proceedings of the first international conference on smarandache type notions in number theory, 21–24 August 1997. Lupton: American Research Press; 1997, p. 81–116. ISBN 1-879585-58-8]. We develop a constructive approach to the theory of real numbers that is based on the number systems with irrational radices (Bergman’s number system and Stakhov’s codes of the golden p-proportions). It follows from this approach ternary mirror-symmetrical arithmetic that is the basis of new computer projects.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790600097X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:2:p:315-334
DOI: 10.1016/j.chaos.2006.01.028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().