EconPapers    
Economics at your fingertips  
 

Multi-stability and almost periodic solutions of a class of recurrent neural networks

Yiguang Liu and Zhisheng You

Chaos, Solitons & Fractals, 2007, vol. 33, issue 2, 554-563

Abstract: This paper studies multi-stability, existence of almost periodic solutions of a class of recurrent neural networks with bounded activation functions. After introducing a sufficient condition insuring multi-stability, many criteria guaranteeing existence of almost periodic solutions are derived using Mawhin’s coincidence degree theory. All the criteria are constructed without assuming the activation functions are smooth, monotonic or Lipschitz continuous, and that the networks contains periodic variables (such as periodic coefficients, periodic inputs or periodic activation functions), so all criteria can be easily extended to fit many concrete forms of neural networks such as Hopfield neural networks, or cellular neural networks, etc. Finally, all kinds of simulations are employed to illustrate the criteria.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906000750
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:2:p:554-563

DOI: 10.1016/j.chaos.2006.01.081

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:554-563