A comparative study between two different methods for solving the general Korteweg–de Vries equation (GKdV)
M.A. Helal and
M.S. Mehanna
Chaos, Solitons & Fractals, 2007, vol. 33, issue 3, 725-739
Abstract:
The family of the KdV equations, the most famous equations embodying both nonlinearity and dispersion, has attracted enormous attention over the years and has served as the model equation for the development of soliton theory. In this paper we present a comparative study between two different methods for solving the general KdV equation, namely the numerical Crank Nicolson method, and the semi-analytic Adomian decomposition method. The stability of the numerical Crank Nicolson scheme is discussed. A comparison between the two methods is carried out to illustrate the pertinent features of the two algorithms.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010435
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:3:p:725-739
DOI: 10.1016/j.chaos.2006.11.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().