Dynamical behavior in the perturbed compound KdV–Burgers equation
Jun Yu,
Weijun Zhang and
Xiaoming Gao
Chaos, Solitons & Fractals, 2007, vol. 33, issue 4, 1307-1313
Abstract:
The dynamical behavior of the perturbed compound KdV–Burgers equation is investigated numerically. It is shown that the chaotic dynamics can occur when the compound KdV–Burgers equation is perturbed by periodic forcing. Different routes to chaos such as period doubling, quasi-periodic routes, and the shapes of strange attractors are observed by applying bifurcation diagrams, the largest Lyapunov exponent, phase projection and Poincaré map.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906001561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:4:p:1307-1313
DOI: 10.1016/j.chaos.2006.01.107
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().