EconPapers    
Economics at your fingertips  
 

Polygons of differential equations for finding exact solutions

Nikolai A. Kudryashov and Maria V. Demina

Chaos, Solitons & Fractals, 2007, vol. 33, issue 5, 1480-1496

Abstract: A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg–de Vries–Burgers equation, the generalized Kuramoto–Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg–de Vries equation, the fifth-order modified Korteveg–de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given.

Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906001913
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:5:p:1480-1496

DOI: 10.1016/j.chaos.2006.02.012

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:33:y:2007:i:5:p:1480-1496