Decentralized model-reference adaptive control for a class of uncertain large-scale time-varying delayed systems with series nonlinearities
Meei-Ling Hung and
Jun-Juh Yan
Chaos, Solitons & Fractals, 2007, vol. 33, issue 5, 1558-1568
Abstract:
In this paper, the problem of model-reference adaptive control for large-scale time-varying delayed systems with series nonlinearities is investigated. By applying the theory of variable structure control, we propose an adaptive controller, which is both memoryless and decentralized, to derive the error subsystem between the local model state and plant state to zero. The proposed variable structure control is able to ensure the stability of a sliding manifold of the composite system even though the control input is nonlinear. The main difficulty for handling the effects of interconnected terms is well solved by a new proposed adaptation mechanism. Finally, a numerical example is illustrated to demonstrate the validity of the derived controller.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906002128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:5:p:1558-1568
DOI: 10.1016/j.chaos.2006.03.004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().