3-Adic Cantor function on local fields and its p-adic derivative
Hua Qiu and
Weiyi Su
Chaos, Solitons & Fractals, 2007, vol. 33, issue 5, 1625-1634
Abstract:
The problem of “rate of change” for fractal functions is a very important one in the study of local fields. In 1992, Su Weiyi has given a definition of derivative by virtue of pseudo-differential operators [Su W. Pseudo-differential operators and derivatives on locally compact Vilenkin groups. Sci China [series A] 1992;35(7A):826–36. Su W. Gibbs–Butzer derivatives and the applications. Numer Funct Anal Optimiz 1995;16(5&6):805–24. [2,3]]. In Qiu Hua and Su Weiyi [Weierstrass-like functions on local fields and their p-adic derivatives. Chaos, Solitons & Fractals 2006;28(4):958–65. [8]], we have introduced a kind of Weierstrass-like functions in p-series local fields and discussed their p-adic derivatives. In this paper, the 3-adic Cantor function on 3-series field is constructed, and its 3-adic derivative is evaluated, it has at most ln2ln3 order. Moreover, we introduce the definition of the Hausdorff dimension [Falconer KJ. Fractal geometry: mathematical foundations and applications. New York: Wiley; 1990. [1]] of the image of a complex function defined on local fields. Then we conclude that the Hausdorff dimensions of the 3-adic Cantor function and its derivatives and integrals on 3-series field are all equal to 1.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906002219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:5:p:1625-1634
DOI: 10.1016/j.chaos.2006.03.024
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().