EconPapers    
Economics at your fingertips  
 

Robust controlling hyperchaos of the Rössler system subject to input nonlinearities by using sliding mode control

Her-Terng Yau and Jun-Juh Yan

Chaos, Solitons & Fractals, 2007, vol. 33, issue 5, 1767-1776

Abstract: A sliding mode control is designed to stabilize the well-known hyperchaos of Rössler system to equilibrium points subject to sector nonlinear input. The proposed control law is robust against both the input nonlinearity and external disturbance. The error bound can be arbitrarily set by assigning the corresponding dynamics to the sliding surfaces when the desired state is not an equilibrium point. Simulation results show that the system state can be regulated to an equilibrium point in the state space. It is also seen that the system still possesses advantage of fast response and good transient performance even though the control input is nonlinear.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906002372
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:33:y:2007:i:5:p:1767-1776

DOI: 10.1016/j.chaos.2006.03.016

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:33:y:2007:i:5:p:1767-1776