V-Langevin equations, continuous time random walks and fractional diffusion
R. Balescu
Chaos, Solitons & Fractals, 2007, vol. 34, issue 1, 62-80
Abstract:
The following question is addressed: under what conditions can a strange diffusive process, defined by a semi-dynamical V-Langevin equation or its associated hybrid kinetic equation (HKE), be described by an equivalent purely stochastic process, defined by a continuous time random walk (CTRW) or by a fractional differential equation (FDE)? More specifically, does there exist a class of V-Langevin equations with long-range (algebraic) velocity temporal correlation, that leads to a time-fractional superdiffusive process? The answer is always affirmative in one dimension. It is always negative in two dimensions: any algebraically decaying temporal velocity correlation (with a Gaussian spatial correlation) produces a normal diffusive process. General conditions relating the diffusive nature of the process to the temporal exponent of the Lagrangian velocity correlation (in Corrsin approximation) are derived. It is shown that a bifurcation occurs as the latter parameter is varied. Above that bifurcation value the process is always diffusive.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000902
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:34:y:2007:i:1:p:62-80
DOI: 10.1016/j.chaos.2007.01.050
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().