Normal forms of vector fields with perturbation parameters and their application
Pei Yu and
A.Y.T. Leung
Chaos, Solitons & Fractals, 2007, vol. 34, issue 2, 564-579
Abstract:
This paper is concerned with the normal forms of vector fields with perturbation parameters. Usually, such a normal form is obtained via two steps: first find the normal form of a “reduced” system of the original vector field without perturbation parameters, and then add an unfolding to the normal form. This way, however, it does not yield the relation (transformation) between the original system and the normal form. A study is given in this paper to consider the role of near-identity transformations in the computation of normal forms. It is shown that using only near-identity transformations cannot generate the normal form with unfolding as expected. Such normal forms, which contain many nonlinear terms involving perturbation parameters, are not very useful in bifurcation analysis. Therefore, additional transformations are needed, resulting in a further reduction of normal forms – the simplest normal form. Examples are presented to illustrate the theoretical results.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906002839
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:34:y:2007:i:2:p:564-579
DOI: 10.1016/j.chaos.2006.03.086
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().