Recursive backstepping control of chaotic Duffing oscillators
Ahmad M. Harb,
Ashraf A. Zaher,
Ahmad A. Al-Qaisia and
Mohammad A. Zohdy
Chaos, Solitons & Fractals, 2007, vol. 34, issue 2, 639-645
Abstract:
In this paper, the dynamics of a forced Duffing oscillator is studied by means of modern nonlinear, bifurcation and chaos theories and shows that the system is ultimately experiencing chaos. The main objective is to characterize and control chaotic behavior. A nonlinear recursive backstepping controller is proposed and the transient performance is investigated. Systematic following of a reference model is introduced. Robustness problems as well as ways to tune the controller parameters are examined. Simulation results are submitted for the uncontrolled and controlled cases, verifying the effectiveness of the proposed controller. Finally a discussion and conclusions are given with possible future extensions.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906003663
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:34:y:2007:i:2:p:639-645
DOI: 10.1016/j.chaos.2006.03.119
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().