Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrödinger equation by the extended hyperbolic auxiliary equation method
Shun-dong Zhu
Chaos, Solitons & Fractals, 2007, vol. 34, issue 5, 1608-1612
Abstract:
By using the extended hyperbolic auxiliary equation method, we present explicit exact solutions of the high-order nonlinear Schrödinger equation with the third-order and fourth-order dispersion and the cubic-quintic nonlinear terms, describing the propagation of extremely short pulses. These solutions include trigonometric function type and exact solitary wave solutions of hyperbolic function type. Among these solutions, some are found for the first time.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906004371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:34:y:2007:i:5:p:1608-1612
DOI: 10.1016/j.chaos.2006.05.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().