Characterization of nonuniform chaos in area-preserving nonlinear maps through a continuous archetype
S. Cerbelli and
M. Giona
Chaos, Solitons & Fractals, 2008, vol. 35, issue 1, 13-37
Abstract:
Numerical investigations conducted over a wealth of nonlinear area-preserving smooth maps (e.g. the Standard Map) showed that these systems possess physically relevant features that are not captured by any continuous archetype of two-dimensional conservative dynamics. Among these properties are the dispersive behavior of stretch factor statistics, the multifractal character of the measure associated with invariant foliations, the sign-alternating property, accounting for the nestedly bent structure of invariant foliations, and the strict inequality between the topological entropy, htop, and the Lyapunov exponent, Λ. We refer to systems possessing all of these properties as nonuniformly chaotic. In this article, we present a globally continuous, piecewise-smooth area-preserving transformation, the toral homeomorphism H, as an archetype of nonuniformly chaotic behavior. The relatively simple structure of point set dynamics and the closed-form knowledge of the pointwise expanding and contracting invariant directions associated with H, permits to derive either analytically, or with arbitrary numerical precision, the standard chaotic properties as well as the dynamics of the physically relevant properties that define nonuniform chaos. Potentialities and limitations of the model proposed in representing geometric and statistical properties of physically relevant smooth systems are discussed in detail.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906004541
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:35:y:2008:i:1:p:13-37
DOI: 10.1016/j.chaos.2006.05.044
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().