EconPapers    
Economics at your fingertips  
 

Wave dynamics for peaked solitons of the Camassa–Holm equation

A. Parker

Chaos, Solitons & Fractals, 2008, vol. 35, issue 2, 220-237

Abstract: A detailed investigation of the wave dynamics for multiply peaked solitons of the Camassa–Holm equation is presented. The analysis proceeds in terms of the underlying component “peakons” using entirely elementary methods. The two-wave interactions exhibit intricate and subtle features such as role reversal, soliton absorption and annihilation, wave steepening and monodirectional propagation (for finite time) and a critical (amplitude) ratio. The discussion covers the entirety of these waveforms comprising two-peakon, peakon–antipeakon and two-antipeakon solutions. Their properties transfer to multipeakon dynamics and examples of three-wave interactions are given.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700553X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:35:y:2008:i:2:p:220-237

DOI: 10.1016/j.chaos.2007.07.049

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:220-237