Projective properties of fractal sets
Anders Nilsson and
Fredrik Georgsson
Chaos, Solitons & Fractals, 2008, vol. 35, issue 4, 786-794
Abstract:
In this paper, it is shown that a bound on the box dimension of a set in 3D can be established by estimating the box dimension of the discrete image of the projected set i.e. from an image in 2D. It is possible to impose limits on the Hausdorff dimension of the set by estimating the box dimension of the projected set. Furthermore, it is shown how a realistic X-ray projection can be viewed as equivalent to an ideal projection when regarding estimates of fractal dimensions.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906005194
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:35:y:2008:i:4:p:786-794
DOI: 10.1016/j.chaos.2006.05.091
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().