Identifying an unknown function in a parabolic equation with overspecified data via He’s variational iteration method
Mehdi Dehghan and
Mehdi Tatari
Chaos, Solitons & Fractals, 2008, vol. 36, issue 1, 157-166
Abstract:
In this research, the He’s variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He’s variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906005960
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:36:y:2008:i:1:p:157-166
DOI: 10.1016/j.chaos.2006.06.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().