Chaos in the Newton–Leipnik system with fractional order
Long-Jye Sheu,
Hsien-Keng Chen,
Juhn-Horng Chen,
Lap-Mou Tam,
Wen-Chin Chen,
Kuang-Tai Lin and
Yuan Kang
Chaos, Solitons & Fractals, 2008, vol. 36, issue 1, 98-103
Abstract:
The dynamics of fractional-order systems has attracted increasing attention in recent years. In this paper, the dynamics of the Newton–Leipnik system with fractional order was studied numerically. The system displays many interesting dynamic behaviors, such as fixed points, periodic motions, chaotic motions, and transient chaos. It was found that chaos exists in the fractional-order system with order less than 3. In this study, the lowest order for this system to yield chaos is 2.82. A period-doubling route to chaos in the fractional-order system was also found.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790600587X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:36:y:2008:i:1:p:98-103
DOI: 10.1016/j.chaos.2006.06.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().