Weakly nonlinear waves in a fluid with variable viscosity contained in a prestressed thin elastic tube
Hilmi Demiray
Chaos, Solitons & Fractals, 2008, vol. 36, issue 2, 196-202
Abstract:
In this work, treating the artery as a prestressed thin elastic tube and the blood as an incompressible Newtonian fluid with variable viscosity which vanishes on the boundary of the tube, the propagation of nonlinear waves in such a fluid-filled elastic tube is studied, in the longwave approximation, through the use of reductive perturbation method and the evolution equation is obtained as the Korteweg-deVries–Burgers equation. A progressive wave type of solution is presented for this evolution equation and the result is discussed.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906006011
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:36:y:2008:i:2:p:196-202
DOI: 10.1016/j.chaos.2006.06.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().