Exact solutions for a class of nonlinear evolution equations: A unified ansätze approach
S.A. Khuri
Chaos, Solitons & Fractals, 2008, vol. 36, issue 5, 1181-1188
Abstract:
In this paper, we propose a modified generalized transformation for constructing analytic solutions to nonlinear differential equations. This improved unified ansätze is utilized to acquire exact solutions that are general solutions of simpler equations that are either integrable or possess special solutions. The ansätze is constructed via the choice of an integrable differential operator or a basis set of functions. The technique is implemented to obtain several families of exact solutions for a class of nonlinear evolution equations with nonlinear term of any order. In particular, the Klein–Gordon, the Sine–Gordon and Landau–Ginburg–Higgs equations are chosen as examples to illustrate the method.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:36:y:2008:i:5:p:1181-1188
DOI: 10.1016/j.chaos.2006.09.066
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().