EconPapers    
Economics at your fingertips  
 

Some criteria for robust stability of Cohen–Grossberg neural networks with delays

WeiLi Xiong and BaoGuo Xu

Chaos, Solitons & Fractals, 2008, vol. 36, issue 5, 1357-1365

Abstract: This paper considers the problem of robust stability of Cohen–Grossberg neural networks with time-varying delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, some sufficient conditions are derived to ensure the global robust convergence of the equilibrium point. The proposed LMI conditions can be checked easily by recently developed algorithms solving LMIs. Comparisons between our results and previous results admits our results establish a new set of stability criteria for delayed Cohen–Grossberg neural networks. Numerical examples are given to illustrate the effectiveness of our results.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008113
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:36:y:2008:i:5:p:1357-1365

DOI: 10.1016/j.chaos.2006.09.065

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:36:y:2008:i:5:p:1357-1365