Grazing bifurcation and chaos in response of rubbing rotor
Weiyang Qin,
Hao Su and
Yongfeng Yang
Chaos, Solitons & Fractals, 2008, vol. 37, issue 1, 166-174
Abstract:
This paper investigates the grazing bifurcation in the nonlinear response of a complex rotor system. For a rotor with overhung disc, step diameter shaft and elastic supports, the motion equations are derived based on the Transition Matrix Method. When the rotor speed increases, the disc will touch the case and lead to rubbing of rotor. When the disc rubs with the case, the elastic force and friction force of the case will make the rotor exhibit nonlinear characteristics. For the piecewise ODEs, the numerical method is applied to obtain its nonlinear response. From the results, the grazing bifurcation, which happens at the moment of touching between disc and case, can be observed frequently. The grazing bifurcation can lead to the jump between periodic orbits. The response can go to chaos from periodic motion under grazing bifurcation. When grazing occurs, response can become quasi-period from period.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008460
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:1:p:166-174
DOI: 10.1016/j.chaos.2006.08.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().