EconPapers    
Economics at your fingertips  
 

Identification of chaotic systems by neural network with hybrid learning algorithm

Shing-Tai Pan and Chih-Chin Lai

Chaos, Solitons & Fractals, 2008, vol. 37, issue 1, 233-244

Abstract: Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods.

Keywords: Genetic algorithm; Steepest descent method; Chaotic systems; Neural network (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008605
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:1:p:233-244

DOI: 10.1016/j.chaos.2006.08.037

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:233-244