EconPapers    
Economics at your fingertips  
 

Naimark–Sacker bifurcations in a delay quartic map

Paulo C. Rech

Chaos, Solitons & Fractals, 2008, vol. 37, issue 2, 387-392

Abstract: In this paper, we consider a two-dimensional map in which one of the fixed points is destabilized via a supercritical Naimark–Sacker bifurcation. We investigate, via numerical simulations, phenomena associated with the appearance, in the phase-space, of closed invariant curves involved in the Naimark–Sacker bifurcation. Lyapunov exponents, parameter-space and phase-space diagrams are used to show that the transition from quasiperiodic to chaotic states generally do not happen in this case. We determine numerically the location of the parameter sets where the Naimark–Sacker bifurcation occurs.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008691
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:2:p:387-392

DOI: 10.1016/j.chaos.2006.08.029

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:37:y:2008:i:2:p:387-392