On global stability criterion of neural networks with continuously distributed delays
Ju H. Park
Chaos, Solitons & Fractals, 2008, vol. 37, issue 2, 444-449
Abstract:
Based on the Lyapunov’s second method and the linear matrix inequality (LMI) optimization approach, this paper presents a new sufficient condition for global asymptotic stability of the equilibrium point for a class of neural networks with discrete and distributed delays. The stability condition is expressed in terms of LMIs, which can be solved easily by various convex optimization algorithms. A numerical example is given to show the less conservatism and effectiveness of proposed method.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:2:p:444-449
DOI: 10.1016/j.chaos.2006.09.021
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().