Robust chaotic control of Lorenz system by backstepping design
Chao-Chung Peng and
Chieh-Li Chen
Chaos, Solitons & Fractals, 2008, vol. 37, issue 2, 598-608
Abstract:
This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906008939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:2:p:598-608
DOI: 10.1016/j.chaos.2006.09.057
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().