Onset of spatiotemporal chaos in damped anharmonically driven sine-Gordon systems
R. Chacón
Chaos, Solitons & Fractals, 2008, vol. 37, issue 3, 902-911
Abstract:
The onset is demonstrated of spatiotemporal chaos arising from the competition between sine-Gordon-breather and kink-antikink-pair solitons by reshaping of a sinusoidal force. After introducing soliton collective coordinates, Melnikov’s method is applied to the resulting effective equation of motion to deduce the parameter-space regions of the ac force where chaotic instabilities are induced. The analysis reveals that the chaotic threshold amplitude when altering solely the pulse shape presents a minimum when the transmitted impulse is maximal, the remaining parameters being held constant. The universality of the results is shown by studying the behaviour of the Lyapunov exponent from a simple recursion relation which models an unstable limit cycle. Computer simulations of the sine-Gordon system show good agreement with the theoretical predictions. Additionally, it is found that the reshaping-induced order↔chaos route is especially rich, including transitions from a two-breather state to a spatially uniform, periodic oscillatory state. The appearance of this spatially uniform state is explained by means of geometrical resonance analysis.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906009489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:3:p:902-911
DOI: 10.1016/j.chaos.2006.09.084
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().