EconPapers    
Economics at your fingertips  
 

The inherent complexity in nonlinear business cycle model in resonance

Junhai Ma, Tao Sun and Lixia Liu

Chaos, Solitons & Fractals, 2008, vol. 37, issue 4, 1104-1112

Abstract: Based on Abraham C.-L. Chian’s research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements’ amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906009726
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:4:p:1104-1112

DOI: 10.1016/j.chaos.2006.10.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:37:y:2008:i:4:p:1104-1112