Empirical mode decomposition analysis of two different financial time series and their comparison
Kousik Guhathakurta,
Indranil Mukherjee and
A. Roy Chowdhury
Chaos, Solitons & Fractals, 2008, vol. 37, issue 4, 1214-1227
Abstract:
Analysis of financial time series with,a view to understanding its underlying characteristic features has been the recent focus of scientists and practitioners studying the financial market. One of the key attributes of a time series is its periodicity. Because of their quasi-periodic nature, the financial time series do not reveal their periodicity clearly. One of the recent developments in time signal analysis is the Hilbert–Huang empirical mode decomposition (EMD) method, which elegantly brings out the underlying periodicity of any time-series. Not many efforts have been made to utilise this technique in qualitative analysis of financial time series. In the present study, we have used the EMD technique to analyse two different financial time series, viz., the daily movement of NIFTY index value of National Stock Exchange, India, and that of Hong Kong AOI, Hong Kong Stock Exchange from July 1990 to January 2006. The returns of the two indices are shown to have strikingly similar probability distribution. The IMF phase and amplitude probability distribution of the two indices also reveal striking similarity. This indicates a remarkable similarity of trading behaviour in the two markets. Considering the geographical and political separation of the two, this indeed is an important discovery.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906009866
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:4:p:1214-1227
DOI: 10.1016/j.chaos.2006.10.065
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().