Parseval frame wavelets associated with A-FMRA
Guochang Wu,
Zhengxing Cheng,
Dengfeng Li and
Fangjuan Zhang
Chaos, Solitons & Fractals, 2008, vol. 37, issue 4, 1233-1243
Abstract:
Mohamed El Naschie’s E-infinity theory has introduced a new framework for understanding and describing nature that is resolution dependent. Wavelets and multiresolution analysis are good mathematical tools to support EI Naschie’s picture of the resolution dependence of the observations. In this paper, inspired by these theory and applications, we study Parseval frame wavelets (PFWs) in L2(Rn) with matrix dilations of the form (Df)(x)=2f(Ax), where A is an arbitrary n×n expanding matrix with integer coefficients, such that ∣detA∣=2. We prove that all PFWs associated to A-FMRA are equivalent to semi-orthogonal Parseval frame wavelets, and characterize all PFWs associated to A-FMRA by showing that they correspond precisely to those for which the dimension function is non-negative integer-valued in L2(Rn). Then, we discover the relation between the spectrum of the central space of an A-FMRA and the supported set of bracket function of its generator and obtain a characterization of PFWs associated with an A-FMRA by the spectrum of the central space of an FMRA. In each section, we construct concrete examples. Thus, we give some mathematical methods to support El Naschie’s picture of the resolution dependence of the observations.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907005905
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:4:p:1233-1243
DOI: 10.1016/j.chaos.2007.07.075
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().