EconPapers    
Economics at your fingertips  
 

Optimizing Markovian modeling of chaotic systems with recurrent neural networks

Adelmo L. Cechin, Denise R. Pechmann and Luiz P.L. de Oliveira

Chaos, Solitons & Fractals, 2008, vol. 37, issue 5, 1317-1327

Abstract: In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906009908
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:5:p:1317-1327

DOI: 10.1016/j.chaos.2006.10.018

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1317-1327