Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy
Weiming Wang,
Xiaoqin Wang and
Yezhi Lin
Chaos, Solitons & Fractals, 2008, vol. 37, issue 5, 1427-1441
Abstract:
Based on the classical predator–prey system with Watt-type functional response, an impulsive differential equations to model the process of periodic perturbations on the predator at different fixed time for pest control is proposed and investigated. It proves that there exists a globally asymptotically stable prey-eradication periodic solution when the impulse period is less than some critical value, and otherwise, the system can be permanent. Numerical results show that the system considered has more complicated dynamics involving quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and “crises”, etc. It will be useful for studying the dynamic complexity of ecosystems.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010058
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:37:y:2008:i:5:p:1427-1441
DOI: 10.1016/j.chaos.2006.10.032
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().