EconPapers    
Economics at your fingertips  
 

Global stability of a delayed SIRS model with temporary immunity

Luosheng Wen and Xiaofan Yang

Chaos, Solitons & Fractals, 2008, vol. 38, issue 1, 221-226

Abstract: This paper addresses a time-delayed SIRS model with a linear incidence rate. Immunity gained by experiencing the disease is temporary; whenever infected, the disease individuals will return to the susceptible class after a fixed period of time. First, the local and global stabilities of the infection-free equilibrium are analyzed, respectively. Second, the endemic equilibrium is formulated in terms of the incidence rate, and two sufficient conditions for its locally asymptotic stability are found, one being proved theoretically, while the other being shown by introducing an auxiliary optimization problem and solving this problem with the help of Matlab toolbox. Finally, by using a Lyapunov functional, a sufficient criterion for the global stability of the endemic equilibrium is established.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010459
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:1:p:221-226

DOI: 10.1016/j.chaos.2006.11.010

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:221-226