Integrable vortex dynamics in anisotropic planar spin liquid model
Zeynep Nilhan Gurkan and
Oktay Pashaev
Chaos, Solitons & Fractals, 2008, vol. 38, issue 1, 238-253
Abstract:
The problem of magnetic vortex dynamics in an anisotropic spin liquid model is considered. For incompressible flow the model admits reduction to saturating Bogomolny inequality analytic projections of spin variables, subject the linear holomorphic Schrödinger equation. It allows us to construct N vortex configurations in terms of the complex Hermite polynomials. Using complex Galilean boost transformations, the interaction of the vortices and the vortex chain lattices (vortex crystals) is studied. By the complexified Cole–Hopf transformation, integrable N vortex dynamics is described by the holomorphic Burgers equation. Mapping of the point vortex problem to N-particle problem, the complexified Calogero–Moser system, showing its integrability and the Hamiltonian structure, is given.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010472
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:1:p:238-253
DOI: 10.1016/j.chaos.2006.11.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().