The k-Fibonacci hyperbolic functions
Sergio Falcón and
Ángel Plaza
Chaos, Solitons & Fractals, 2008, vol. 38, issue 2, 409-420
Abstract:
An extension of the classical hyperbolic functions is introduced and studied. These new k-Fibonacci hyperbolic functions generalize also the k-Fibonacci sequences, say {Fk,n}n=0∞, recently found by studying the recursive application of two geometrical transformations onto C¯=C∪{+∞} used in the well-known four-triangle longest-edge (4TLE) partition. In this paper, several properties of these k-Fibonacci hyperbolic functions are studied in an easy way. We finalize with the introduction of some curves and surfaces naturally related with the k-Fibonacci hyperbolic functions.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010587
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:2:p:409-420
DOI: 10.1016/j.chaos.2006.11.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().