EconPapers    
Economics at your fingertips  
 

Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells

Xiaowu Jiang, Xueyong Zhou, Xiangyun Shi and Xinyu Song

Chaos, Solitons & Fractals, 2008, vol. 38, issue 2, 447-460

Abstract: A delay differential mathematical model that described HIV infection of CD4+ T-cells is analyzed. The stability of the non-negative equilibria and the existence of Hopf bifurcation are investigated. A stability switch in the system due to variation of delay parameter has been observed, so is the phenomena of Hopf bifurcation and stable limit cycle. The estimation of the length of delay to preserve stability has been calculated. Using the normal form theory and center manifold argument, the explicit formulaes which determine the stability, the direction and the periodic of bifurcating period solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010824
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:2:p:447-460

DOI: 10.1016/j.chaos.2006.11.026

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:38:y:2008:i:2:p:447-460