EconPapers    
Economics at your fingertips  
 

The application of homotopy analysis method to thin film flows of a third order fluid

M. Sajid and T. Hayat

Chaos, Solitons & Fractals, 2008, vol. 38, issue 2, 506-515

Abstract: The aim of the current article is to provide the analytic solutions to two thin film flows of a third order fluid. These are: (i) when the fluid moves on a belt and (ii) when the fluid moves down an inclined plane. Both problems have been solved using homotopy analysis method (HAM). These problems were already solved by Siddiqui et al. [Siddiqui AM, Mahmood R, Ghori QK. Thin film flow of a third grade fluid on a moving belt by He’s homotopy perturbation method. Int J Non-Linear Sci Numer Simul 2006;7:1–8, Siddiqui AM, Mahmood R, Ghori QK. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons & Fractals in press] using homotopy perturbation method (HPM) and traditional perturbation technique. With the help of two examples, it is shown that HPM is a special case of HAM. It has been noted that the solution up to second order is not enough in the case of flow on a moving belt. It is explicitly proved that the solutions of the flow down an inclined plane given in reference [Siddiqui AM, Mahmood R, Ghori QK. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons & Fractals in press] are divergent and hence have no meanings. The variation of velocity field corresponding to pertinent flow parameters is graphically presented and discussed.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906010897
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:2:p:506-515

DOI: 10.1016/j.chaos.2006.11.034

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:38:y:2008:i:2:p:506-515