A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system
Guoyuan Qi,
Guanrong Chen,
Michaël Antonie van Wyk,
Barend Jacobus van Wyk and
Yuhui Zhang
Chaos, Solitons & Fractals, 2008, vol. 38, issue 3, 705-721
Abstract:
This paper introduces a new 3-D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing chaotic attractors. More importantly, the system can generate a four-wing chaotic attractor with very complicated topological structures over a large range of parameters. Some basic dynamical behaviors and the compound structure of the new 3-D system are investigated. Detailed bifurcation analysis illustrates the evolution processes of the system among two coexisting sinks, two coexisting periodic orbits, two coexisting single-wing chaotic attractors, major and minor diagonal double-wing chaotic attractors, and a four-wing chaotic attractor. Poincaré-map analysis shows that the system has extremely rich dynamics. The physical existence of the four-wing chaotic attractor is verified by an electronic circuit. Finally, spectral analysis shows that the system has an extremely broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:3:p:705-721
DOI: 10.1016/j.chaos.2007.01.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().