Central limit theorem behavior in the skew tent map
Michael C. Mackey and
Marta Tyran-Kamińska
Chaos, Solitons & Fractals, 2008, vol. 38, issue 3, 789-805
Abstract:
In this paper we study and establish central limit theorem behavior in the skew (generalized) tent map transformation T: Y→Y originally considered by Billings and Bollt [Billings L, Bollt EM. Probability density functions of some skew tent maps. Chaos, Solitons & Fractals 2001; 12: 365–376] and Ito et al. [Ito S, Tanaka S, Nakada H. On unimodal linear transformations and chaos. II. Tokyo J Math 1979; 2: 241–59]. When the measure ν is invariant under T, the transfer operator PT:L1(ν)→L1(ν) governing the evolution of densities f under the action of the skew tent map, as well as the unique stationary density, are given explicitly for specific transformation parameters. Then, using this development, we solve the Poisson equation f=PTf+ϕ for two specific integrable observables ϕ and explicitly calculate the variance σ(ϕ)2=∫Yϕ2(y)ν(dy).
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:3:p:789-805
DOI: 10.1016/j.chaos.2007.01.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().