Exponential p-stability of delayed Cohen–Grossberg-type BAM neural networks with impulses
Yonghui Xia,
Zhenkun Huang and
Maoan Han
Chaos, Solitons & Fractals, 2008, vol. 38, issue 3, 806-818
Abstract:
An impulsive Cohen–Grossberg-type bidirectional associative memory (BAM) neural networks with distributed delays is studied. Some new sufficient conditions are established for the existence and global exponential stability of a unique equilibrium without strict conditions imposed on self regulation functions. The approaches are based on Laypunov–Kravsovskii functional and homeomorphism theory. When our results are applied to the BAM neural networks, our results generalize some previously known results. It is believed that these results are significant and useful for the design and applications of Cohen–Grossberg-type bidirectional associative memory networks.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000380
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:3:p:806-818
DOI: 10.1016/j.chaos.2007.01.009
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().